Reactive immunization suppresses advanced glycation and mitigates diabetic nephropathy.

نویسندگان

  • Tatiana Shcheglova
  • Sudesh Makker
  • Alfonso Tramontano
چکیده

Agents that inhibit glycation end products by reducing the carbonyl load from glycation and glycoxidation are an emerging pharmacologic approach to treat complications of diabetes. We previously demonstrated that antibodies generated to the glycoprotein keyhole limpet hemocyanin (KLH) can cross-link with reactive carbonyl residues on protein conjugates. Here, we immunized streptozotocin-induced diabetic rats with KLH to assess the capacity of the elicited antibodies to intercept carbonyl residues on glycated proteins and to mitigate glycation-related pathology. Compared with diabetic rats immunized with adjuvant alone, KLH-immunized diabetic rats had decreased levels of glycated peptides in sera and demonstrated a reduction in albuminuria, proteinuria, deposition of glycation end products in the kidney, and histologic damage. In vitro, low molecular weight glycated peptides from rat serum reacted with anti-KLH antibodies at a faster rate than normal IgG and selectively modified the lambda chains. The reaction products contained peptide sequences from type I collagen alpha chain, albumin, and LDL receptor-related protein. These adduction reactions were inhibited by free KLH and by reduction of glycated peptides with borohydride. In summary, these results suggest that inherent reactivity of Ig light chains provides a natural mechanism for the removal of cytotoxic glycation products. This reactivity can be augmented by glycoprotein-specific reactive immunization, a potential biopharmaceutical approach to glycation-related pathology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Oral Glycine and Lysine Therapy on Receptor for Advanced Glycation End Products and Transforming Growth Factor Beta Expression in the Kidney of Streptozotocin-Induced Diabetic Rats in Comparison with Normal Rats

Background & Aims: Today, diabetic nephropathy is considered to be one of the most common causes of end stage renal disease. Uncontrolled hyperglycemia, and consequently, production of advanced glycation end products activate pathways which play key roles in diabetic nephropathy. Among these pathways, high expression of receptor for advanced glycation end products (RAGE) and transforming growth...

متن کامل

Covalent Binding Antibodies Suppress Advanced Glycation: On the Innate Tier of Adaptive Immunity

Non-enzymatic protein glycation is a source of metabolic stress that contributes to cytotoxicity and tissue damage. Hyperglycemia has been linked to elevation of advanced glycation endproducts, which mediate much of the vascular pathology leading to diabetic complications. Enhanced glycation of immunoglobulins and their accelerated vascular clearance is proposed as a natural mechanism to interc...

متن کامل

Immunization of AGE-modified albumin inhibits diabetic nephropathy progression in diabetic mice

BACKGROUND Diabetic nephropathy (DN) is a serious vascular complication of diabetes and an important cause of end-stage renal disease. One mechanism by which hyperglycemia causes nephropathy is through the formation of advanced glycation end products (AGE). Development of vaccination would be a promising therapy for the future, while to date, anti-AGE therapy is based on medicines that are need...

متن کامل

Immunization with advanced glycation end products modified low density lipoprotein inhibits atherosclerosis progression in diabetic apoE and LDLR null mice

BACKGROUND Diabetes accelerates atherosclerosis through undefined molecular mechanisms. Hyperglycemia induces formation of advanced glycation end product (AGE)-modified low-density lipoprotein (LDL). Anti-AGE-LDL autoantibodies favor atherosclerosis (AS) progression in humans, while anti oxidized LDL immunization inhibits AS in hypercholesterolemic, non-diabetic mice. We here investigated if AG...

متن کامل

Glucose, glycation, and RAGE: implications for amplification of cellular dysfunction in diabetic nephropathy.

Receptor for advanced glycation endproducts (RAGE) is a multi-ligand member of the immunoglobulin superfamily of cell surface molecules. Driven by rapid accumulation and expression of key ligands such as advanced glycation endproducts (AGE) and S100/calgranulins in diabetic tissues, upregulation and activation of RAGE magnifies cellular perturbation in tissues affected by hyperglycemia, such as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 2009